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Abstract

In the present work, we study the stability of a system designed for the coating of optical fiber. This is achieved by

studying the stability of the flowing resin in the die while coupled with a viscoelastic optical fiber. We develop a

numerical code based on a sixth-order compact finite-difference method in order to solve the two-dimensional

Navier–Stokes equations. We show that there is a bifurcation flow for a given value of the Reynolds number, wherever

the vibration of the optical fiber has been experimentally observed. The stability of the resulting flow, coupled with a

nonrigid optical fiber, is considered. Two-dimensional and three-dimensional stability analyses were made. The system

was found to be subjected to two kinds of instability induced by two distinguishable groups of modes. For an optical

fiber with a small radius, we assume that the preceding vibration may not be the only cause of the irregularity in the

coating thickness. Therefore, a model taking into account the deformation of the liquid resin surface, under the action

of the surface-tension forces, before resin solidification, and after leaving the die, is proposed. This model assumes that

the liquid layer is subjected to surface-tension and gravity forces. It was found that the dynamic equation depends on

two dimensionless parameters. It is found that the surface of the fiber has a wavy form. The length of the wave depends

on the two dimensionless parameters. Our work shows qualitative agreement with the experimental results without

adjusting arbitrary constants.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The aim of this work is to study the stability of the optical-fiber coating system. The use of optical fibers is increasing,

thus manufacturers need to increase its production. An increase in the production could be achieved by faster

manufacturing processes. As far as the coating system is concerned, this requires a high traveling speed of the optical

fiber across the liquid resin, during the coating process. However, the optical fiber’s speed is limited by the instability of

the system, which may induce a vibration harming the coating quality. Our objective in this paper is to find the origin of

this instability by analyzing the stability of the coating system. The coating system depicted in Fig. 1, shows an optic

fiber traveling at speed Vf over some rollers and passing through a resin-filled die. The die, a component of the system,

is depicted more clearly in Fig. 2. The die is supplied laterally by the resin while it is dragged by the optical fiber, which

forms a coat after it leaves the die. The die ends by a small hollow cylinder in order to keep the flow uniform and
e front matter r 2006 Elsevier Ltd. All rights reserved.
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parallel to the axis of the optical fiber, at the outlet of the die. The outlet of the die which includes the hollow small

cylinder, is zoomed out in Fig. 3.

The dimensions of the microdevices used during the flow influences the model. When the microdevices are large

enough, the fluid is considered a continuum medium. In the present work, we assume that the radius of the optical fiber,

as well as the die dimensions, are large enough to consider the fluid as a continuum medium. The results are less

accurate for extremely small radii of optical fibers and very small dies. The limit of validity of the continuum model is

discussed thoroughly by Gad-el-Hak (1999). In this work, the fluid is assumed to satisfy the incompressible

Navier–Stokes equations.

The sixth-order compact finite-difference schemes,1 implemented by an alternating-direction implicit procedure,

using the Thomas algorithm, is used to solve the two-dimensional Navier–Stokes equations in the ðc;oÞ formulation; at

this stage the optical fiber is assumed to be rigid and traveling at constant speed. The stability of the coating system, in

the vicinity of the obtained dynamic equilibrium position will be studied, when the basic flow is obtained. In these

studies, the optical fiber is considered as a viscoelastic medium. The disturbance in the optical fiber and the in-flow

within the die are coupled via the boundary conditions. Both axisymmetric and nonaxisymmetric disturbances are

considered.

Section 2 will recall the two-dimensional Navier–Stokes equations in ðc;oÞ formulation and the boundary conditions

describing the flow in the die. In Section 3, the method used to solve the Navier–Stokes equations is described. In

Section 4, we interpret the obtained steady solution. In Section 5, we study the stability of the dynamic equilibrium

steady state when subjected to an infinitesimal disturbance. The optical fiber is considered as a viscoelastic material

interacting with the flow in the die. The analysis will be carried out by considering an infinitesimal disturbance in the

form of a normal mode. In Section 6, a numerical approach is developed to find the eigenvalues of the system and to

view its stability. In Sections 8 and 9, the temporal eigenvalues of the system will be discussed. A model tackling the

deformation of the coating surface by the surface-tension and gravity forces is developed in Section 10. A conclusion is

provided in Section 11.
1The compact finite-difference schemes is an implicit finite-difference method. The difference equation involves the function as well

as its derivatives, which increases the precision of the schemes without an increase in the number of the grid points involved in the

computation. See Hirsch (1997, vol. 1).
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1.1. Previous experimental work and models

The stability of the coating system has been studied experimentally by Kaneko et al. (2002). In their experiment, an optical

fiber is drawn from a bobbin to a top roller that passes through a die of tapered form, filled up by a resin. When the optical

fiber leaves the die, it is subjected to UV light to dry it, before leading it to a second bobbin. The die in this experiment has a

tapered form and ends by a straight section of cylindrical form. The die is supplied by the resin through its large section. The

flow at the inlet of the die is perpendicular to the axes of the fiber. The experimental results show that the system is stable if

the speed of the optical fiber does not exceed some critical value, determined by the experiment. For velocities higher than

the threshold (about 1000m/min), the system becomes unstable. The critical Reynolds number, based on the width of

annular outlet passage, dc, and the speed of the optical fiber, is found to be in the range, 0:2o ~Reco1:2.

1.2. Prior theoretical studies

A theoretical model has been proposed by Kaneko et al. (2002), in order to understand the origin of this instability. The

work neglected the analysis of the flow within the die. It added difficulty to the theoretical calculation. Moreover, only the

interaction between the flow in the small cylindrical outlet tube and the optical fiber is considered in their model. Their

theoretical model has a disadvantage in the form of two tailored arbitrary constants. These constants are included to

obtain a qualitative agreement between experimental and theoretical results, without a theoretical foundation.

In their model, Kaneko et al. (2002) assume that the instability is due to the interaction between the optical fiber, seen

as an elastic solid, and the flow in the straight cylindrical section at the outlet of the die. The gap between the cylindrical

rigid wall and the surface of the optical fiber is considered small enough to neglect the curvature of the wall. The

mathematical model proposed by Inada and Hayama (1990a, b) has been used in order to model the flow. The flow

equations are solved numerically and the unsteady pressure is computed. They predict the motion of the optical fiber

with the unsteady pressure at its surface. In their approach, the moving-string model proposed by Tajima (1970) is used

to describe the motion of the optical fiber far from the die. In the die outlet, where the interaction between the flow and

the optical fiber is supposed to take place, the model involves a kinematic assumption about the motion of the optical

fiber. We refer to their paper for more information. Our insight is that the vibration of the optical fiber is due to the

instability of the flow in the die, interacting with the optical fiber that can be considered as a viscoelastic medium.
2. Basic flow formulation

We consider a two-dimensional flow within the die that satisfies the two-dimensional Navier–Stokes equations. We

opt for a ðc;oÞ formulation; c and o represent the stream function and the vorticity, respectively. The advantage of this

formulation lies in the fact that it does not contain the pressure term in the Navier–Stokes equations and has a reduced

number of dependent variables. Let c and o be defined such that

vr ¼ �
1

r

qc
qx
; vx ¼

1

r

qc
qr
; o ¼

qvr

qx
�

qvx

qr
;

o and c obey the following equations (Batchelor, 1967):

q2c
qx2
þ

q2c
qr2
�
1

r

qc
qr
¼ �ro, (1)

qo
qt
þ vx

qo
qx
þ vr

qo
qr
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vr

r
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1

Re

q2o
qr2
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1

r

qo
qr
þ

q2o
qx2
�

o
r2

� �
. (2)

In these equations, the velocity is scaled by the speed Vf of the optical fiber, the distance by the radius Rd of the die and

the time by RdV�1f . The Reynolds number is Re ¼ Vf Rd=n, where n is the kinematic viscosity of the resin. Let Rc be the

gap between the small cylinder at the outlet of the die and the surface of optical fiber; we define another Reynolds

number ~Re based on Rc, such that ~Re ¼ Vf Rc=n; therefore, ~Re ¼ Rc Re=Rd . The previous equations are associated with

the following boundary conditions:
(i)
 c ¼ 0 at the upper part of the wall of the die and at the optical fiber, shown in Fig. 2;
(ii)
 c varies linearly with x at the inlet of the die shown in Fig. 2 and qc=qn ¼ 0 at the outlet of the die shown in the

same figure, n being normal to the outlet section;
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(iii)
 c ¼ cd ¼ 0:001, on the lower part of the die wall shown in Fig. 2;
(iv)
 the no-slip condition, as well as the continuity equation, are used to connect o to c, at the wall.
3. Numerical method for the basic flow

The discretization of time allows the transformation of the previous nonlinear equations to a system of second-order

differential equations in x or r direction. The previous nonlinear equations are solved by the compact sixth-order finite-

difference method, implemented by the Thomas algorithm. The iteration in time is pursued until a steady solution is

obtained. The direction r and x are alternated at each time step [ADI method; see Hirsch (1997)]. In order to verify the

accuracy of our algorithm, we check its core by solving some differential equations of known solution and comparing

our numerical results with the exact known solution. The error was less than one per cent for 13 points in the range

ð0; 1Þ. The whole code is used to solve the cavity problem and the two-dimensional flow in a divergent channel flow. The

obtained results are compared to the known results [see Al-Farkh (1998)].
4. Basic flow description

A series of numerical tests have been performed for some Reynolds number values around the experimental critical

value. The die considered, is such that 0:1prp1 and �2pxp2. Knowing that the vibration of the optical fiber

observed by the experiment has a Reynolds number ~Re in the range ð0:2; 1:2Þ, the numerical experiment has

been performed for some values of Reynolds number ~Re, in the range ð0:01; 100Þ. It was found that the flow in the die

was a single-cell pattern if the Reynolds number is less than 0.2 and a two-cell patterns if the Reynolds number exceeds

1 (see Fig. 4). Only two-cell patterns have been observed when the Reynolds number varies in the range (1, 100).

However, the form of the pattern changes with increasing Reynolds number. Fig. 5 shows the velocity profiles in three

stations as a function of the distance from the optical fiber. The stations are localized at x ¼ �1:34, 0, and 1.34.

Fig. 5(a) shows the axial velocity for ~Re ¼ 5. As one can see, this profile has an inflection point and therefore has to be

subjected to inviscid flow instabilities. Fig. 5(b) shows that the axial velocity profile for ~Re ¼ 0:1 has no such inflexion

point. Figs. 5(c) and (d) show that the velocity profile has a large gradient near the optical fiber for both Reynolds

number values. It is found that the axial derivative of the velocity field of the basic flow is small with respect to

the radial derivative. This allows us to perform a local stability analysis, by neglecting the variation of the flow, in the

axial direction. Therefore, the validity of this analysis will be limited to waves that are short in comparison with the

length of the die.
5. Basic flow stability

Our task is to study the stability of an incompressible Newtonian fluid of density r and dynamic viscosity Z, flowing
in a die, around a viscoelastic optical fiber translating at speed Vf . The viscoelastic optical fiber is made of an

incompressible, viscoelastic material of density r equal to the fluid density, viscosity Zs, and shear modulus G (shown in

Fig. 2). In this paper, we use dimensionless variables. The length scale is the radius of the die Rd , the time scale is

ðrR2
d=GÞ1=2, and the velocity scale is ðG=rÞ1=2. The dimensionless mean flow velocity profile in cylindrical coordinates is

obtained numerically in the preceding section:

~V ¼ GðUx;Ur; 0Þ, (3)

where G ¼ ðrV2
f =GÞ1=2. The governing equations for the fluid are the continuity and momentum equations

qivi ¼ 0, (4)

qtvi þ vj qjvi ¼ �qipþ �G q2j vi, (5)

where qt ¼ q=qt, qj ¼ q=qxj , � ¼ Re�1, and Re � rVf Rd=Z is the Reynolds number as defined before. The pressure, p,

in the fluid is nondimensionalized by the shear modulus G. The optical fiber is modeled using the dynamical equations

for an incompressible viscoelastic material (Landau and Lifshitz, 1970). The dynamics of the optical fiber is described

by a displacement field ui, which represents the displacement of material points from their steady-state positions, under

the action of the stresses at the interface. For an incompressible material, the displacement field ui satisfies the
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solenoidal condition

qiui ¼ 0, (6)

and the momentum conservation equation is

q2t ui ¼ �qipþ q2j ui þ �GZr q
2
j vi. (7)

The left-hand side represents the rate of change of momentum per unit volume. The three terms on the right-hand side

are, respectively, the pressure gradient, the divergence of the elastic stress due to the strain in the material, and the

divergence of the viscous stress due to the strain rate. Lastly, the wall velocity is given by vi ¼ qtui, and Zr ¼ Zs=Z.

5.1. Nonaxisymmetric disturbances

In the linear stability analysis, small perturbations in the form of Fourier modes are introduced in the fluid velocity

field and the wall displacement field

ðvj ; pÞ ¼ ðevj ; epÞeðikxþinyþstÞ þ cc, (8)
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ðuj ; pÞ ¼ ðeuj ; epÞeðikxþinyþstÞ þ cc, (9)

where evj and euj are the eigenfunctions which are functions of r only, k and n are the axial and the Azimuthal wave

numbers, respectively, p is the pressure disturbance, and cc stands for complex conjugate. The real part of the

eigenvalue s is the (temporal) growth rate of the perturbation, and the imaginary part is the frequency. Upon inserting

the above perturbation velocity into the conservation equations for the fluid velocity field (4) and (5), and neglecting the

nonlinear terms in evj and the terms involving the x-wise derivation of the basic flow, the following equations are

obtained for the eigenfunction evj in cylindrical coordinates:

½dr þ r�1�evr þ ikevx þ inr�1evy ¼ 0, (10)

½sþ ikGUx�evr þUrdrevr þ evrdrUr ¼ �drepþ �Gf½d2
r þ r�1dr � r�2ð1þ n2Þ � k2

�evr � 2inr�2evyg, (11)

½sþ ikGUx�evx þ drUxevr þUrdrevx ¼ �ikepþ �G½d2
r þ r�1dr � ðk

2
þ n2r�2Þ�evx, (12)

½sþ ikGUx�evy þUrdrevy ¼ �inepr�1 þ �Gf½d2
r þ r�1dr � r�2ð1þ n2Þ � k2

�evy þ 2inr�2evrg, (13)

where dr stands for derivative with respect to r, and epðrÞ is the eigenfunction for the pressure. Similarly, the equations

for the eigenfunction euj could be obtained by inserting Eq. (9) for the solid displacement perturbation into the

conservation equations (6) and (7), yielding in cylindrical coordinates

½dr þ r�1�eur þ ikeux þ inr�1euy ¼ 0, (14)

s2eur ¼ �drepþ ð1þ �GZrsÞf½d
2
r þ r�1dr � r�2ð1þ n2Þ � k2

�eur � 2inr�2euyg, (15)

s2eux ¼ �ikepþ ð1þ �GZrsÞ½d
2
r þ r�1dr � ðk

2
þ n2r�2Þ�eux, (16)

s2euy ¼ �inr�1epþ ð1þ �GZrsÞf½d
2
r þ r�1dr � r�2ð1þ n2Þ � k2

�euy þ 2inr�2eurg. (17)

The boundary conditions at the center of the optical fiber r ¼ 0, when applied to the azimuthally varying modes with

Azimuthal wavenumber n ¼ 1, areeur þ ieuy ¼ 0, (18)
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eux ¼ ep ¼ 0. (19)

At the interface r ¼ 0:1, we enforce the velocity continuityevr þ drUreur ¼ seur, (20)

evx þ drUxeur ¼ seux, (21)

evy ¼ seuy, (22)

and the continuity of the stressesrr ¼ etrr; esry ¼ etry; esrx ¼ etrx (23)

and at the surface r ¼ 1, we enforce the no slip conditionevr ¼ 0; evy ¼ 0; evx ¼ 0. (24)

The terms drUreur and drUxeur in (20) and (21) represent the variation of the mean velocity at the interface due to the

surface displacement. The boundary conditions at r ¼ 0, applied to the two components of the nonaxisymmetric

eigenmodes ðevr;evyÞ with Azimuthal wave number n41, areeur ¼ euy ¼ 0, (25)

the remaining boundary conditions are identical to those applied to the eigenmodes with Azimuthal wave number

n ¼ 1.

The linearized mass and momentum equations for the fluid and solid can be transformed to a system of first-order

differential equations. In order to do that, we take the derivative with respect to r of all the terms in the continuity

Eqs. (10) and (14). This yields

d2
r þ r�1dr � r�2

� �evr þ ikdrevx þ indrðr
�1evyÞ ¼ 0, (26)

d2
r þ r�1dr � r�2

� �eur þ ikdreux þ indrðr
�1euyÞ ¼ 0; (27)

Eqs. (26) and (27) give d2
revr and d2

reur as functions of the velocity and displacement components and their first-order

derivatives. If these functions are substituted into (11)–(13) and (15)–(17), the system can be transformed to the

following first-order differential equations, for the fluid:

drevr ¼ �r�1vr � ikevx � inr�1evy, (28)

drep ¼ �½sþ Gikð1� r2Þ�evr � �Gfðr�2n2 þ k2
Þevr þ inr�2evy þ ikexx þ inr�1exyg, (29)

dr
exx ¼ �r�1exx þ ðk

2
þ n2r�2Þevx þ ð�GÞ

�1
½sþ Gikð1� r2Þ�evx � 2��1revr þ ikð�GÞ�1ep, (30)

drevx ¼
exx, (31)

dr
exy ¼ �r�1exy þ ½r�2ð1þ n2Þ þ k2

�evy � 2inr�2evr þ ð�GÞ�1½sþ Gikð1� r2Þ�evy þ inðr�GÞ�1ep, (32)

drevy ¼ exy, (33)

and the following first-order differential for the compliant solid

dreur ¼ �r�1ur � ikeux � inr�1euy, (34)

drep ¼ �s2eur � ð1þ �GZrsÞfðr
�2n2 þ k2

Þeur þ inr�2euy þ ikewx þ inr�1ewyg, (35)

drewx ¼ �r�1ewx þ ðk
2
þ n2r�2Þeux þ ð1þ �GZrsÞ

�1s2eux þ ikð1þ �GZrsÞ
�1ep, (36)

dreux ¼ ewx, (37)

drewy ¼ �r�1ewy þ ½r�2ð1þ n2Þ þ k2
�euy � 2inr�2eur þ ð1þ �GZrsÞ

�1
½s2euy þ inr�1ep�, (38)

dreuy ¼ ewy, (39)

where the vectors ðexr;exy;exxÞ and ðewr;ewy;ewxÞ are, respectively, the derivative of ðevr;evy;evxÞ and ðeur; euy; euxÞ with respect to r.
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6. Numerical method

The differential equations (28)–(39) and their equivalent for the axisymmetric disturbances were solved using a

fourth-order Runge–Kutta method to obtain three independent solutions, ðX1;X2;X3Þ, each of which satisfy the

boundary conditions at r ¼ 1. The components of the vectors Xi, i ¼ 1; 2; 3, are the velocity components, their first-

order derivatives with respect to r, and the pressure in the fluid medium. The independence of the three solutions, Xi, is

ensured by starting the computation with one of the three independent vectors formed by several values of the vector

ðexx;exy; epf Þ at r ¼ 1. For instance, X1 can be obtained by starting the computation with the boundary condition

X1 ¼ ðevx;evr; ;evy; epf ;exy;exxÞ
T
¼ ð0; 0; 0; 1; 0; 0ÞT; r ¼ 1;

X2 can be obtained by starting the computation with the boundary condition

X2 ¼ ðevx;evr; ;evy; epf ;exy;exxÞ
T
¼ ð0; 0; 0; 0; 1; 0ÞT; r ¼ 1;

and X3 can be obtained by starting the computation with the boundary condition

X3 ¼ ðevx;evr; ;evy; epf ;exy;exxÞ
T
¼ ð0; 0; 0; 0; 0; 1ÞT; r ¼ 1.

With this choice, the boundary conditions at r ¼ 1 are satisfied by all solutions, namely X1, X2 and X3. It should be

noted that the chosen values ðevx;evr; ;evy; epf ;
exy;exxÞ

T at r ¼ 1 to initiate the computation of X1, X2 and X3 must form a set

of free vectors, which is sufficient for X1, X2 and X3 to be free vectors. Then the general solution in the fluid medium is

an arbitrary combination of the three free solutions X1, X2 and X3, such that

Z1 ¼ A1X1 þ A2X2 þ A3X3, (40)

where ðA1;A2;A3Þ are arbitrary constants.

Similarly, for the displacement field in the solid, we solve for three independent solutions, ðY1;Y2;Y3Þ, each of which

satisfy the boundary conditions at r ¼ 0. The components of the vectors Yi, i ¼ 1; 2; 3 are the components of the

displacement vector and their first-order derivative with respect to r and the pressure in the solid medium. The

independence of the solutions is ensured by beginning the computation with one of the three independent values of the

vector ðewx;ewy; epsÞ at r ¼ 0. For instance, Y1 can be obtained by starting the computation with the boundary condition

Y1 ¼ ðeux; eur; ; euy; eps;ewy;ewxÞ
T
¼ ð0; 0; 0; 1; 0; 0ÞT; r ¼ 0;

Y2 can be obtained by starting the computation with the boundary condition

Y2 ¼ ðeux; eur; ; euy; eps;ewy;ewxÞ
T
¼ ð0; 0; 0; 0; 1; 0ÞT; r ¼ 0;

and Y3 can be obtained by starting the computation with the boundary condition

Y3 ¼ ðeux; eur; ; euy; eps;ewy;ewxÞ
T
¼ ð0; 0; 0; 0; 0; 1ÞT; r ¼ 0;

by this choice, the boundary conditions at r ¼ 0 are satisfied by all solutions, namely Y1, Y2 and Y3. It should be noted

that the chosen values ðeux; eur; ; euy; eps;ewy;ewxÞ
T at r ¼ 0 to initiate the computation of Y1, Y2 and Y3 must form a set of

free vectors, which is sufficient for Y1, Y2 and Y3 to be free vectors. Then, the general solution in the solid medium is an

arbitrary combination of the three free solutions Y1, Y2 and Y3, such that

Z2 ¼ B1Y1 þ B2Y2 þ B3Y3, (41)

where ðB1;B2;B3Þ are arbitrary constants. The boundary conditions at r ¼ 0:1 lead to the eigenvalue problem

MC ¼ 0, (42)

where the elements of the 6� 6 matrix M are a linear combination of the particular solution components ðX1;X2;X3Þ,

ðY1;Y2;Y3Þ and their derivatives with respect to r at r ¼ 0:1, which involve k; n;Re; Zr and G. The components of the

vector C are the six arbitrary constants A1, A2, A3, B1, B2 and B3. The characteristic equation is obtained by setting the

determinant of the characteristic matrixM to zero. The solution of the characteristic equation gives the growth rate as a

function of the Reynolds number for different values of the parameters k, n, Zr and G.
In order to find the eigenvalues of the system, one has to find the zero of the determinant D, of the matrix M. The

method used by Hamadiche and Gad-el-Hak (2002) has been used. However, this method has the disadvantage of the

existence of various stable modes of low frequency and low damping rate which yields a high-order polynomial.

Moreover, the modes are too close to define precisely the contour of integration and to isolate them in different

domains. Therefore, we decided to sweep out the complex (amplification rate, frequency)-plane. For this task, the

complex plane has been divided into a set of large number of small cells (as shown in Fig. 6). The corners of these cells
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are used as initial conditions for the Newton–Raphson method to converge toward the eigenmodes. The code

successfully converges all the time for the nearest eigenvalue without overflow.
7. Unstable modes

The technique described in the above section predicts more than one unstable mode, and shows that the system is

unstable to nonaxisymmetric disturbances. Two categories of unstable modes were found and termed G1 and G2. The

first category, G1, has a small amplification rate in comparison with the amplification rate of the second category, G2.

The frequency of the category, G1, is much lower than the frequency of the category G2. The ratio of the amplification

rates is about 40. The G1 category concerns the flow at low and high Reynolds number. G2 concerns only the flow

having two-cell form: ~ReX1. In the next two sections, we study in detail these two groups of unstable modes.
8. Analysis of the G1 group

The group, G1, contains only one unstable mode before the bifurcation of the basic flow, i.e. when the Reynolds

number ~Rep0:2. Two unstable modes have been observed after the bifurcation of the basic flow, i.e. when the Reynolds

number ~ReX5. These unstable modes are characterized by a small amplification rate when compared to the

amplification rate of the second group [see Fig. 7(a)]. Moreover, this instability takes the form of a long wave (small

wavenumber), while our assumption of local stability analysis limits the validity of our analysis to waves shorter than

the die length (large wavenumber). In fact, the local analysis neglects the variation of the basic flow in the x direction

and consequently does not take account of the boundary conditions at x ¼ �2 and 2. Thus, the mode has to be short

enough in order to justify neglecting the effect of the boundary conditions at x ¼ �2 and 2. Furthermore, a wave

having a length greater than the length of the die should not exist within the die. This short wave could be a source term,

that creates a long wave, which propagates only in the optical fiber far from the die. As our analysis is related to waves

that are supposed to be simultaneously in the fluid medium within the die and in the optic fiber, one has to disregard the

waves having a length greater than the length of the die. For these reasons, we disregard these kinds of waves and

conclude that these instabilities are not the cause of the vibration observed in the experiment.

However, Fig. 7(b) shows that the frequency decreases when the wavenumber increases, indicating a negative group

velocity, Vg ¼ �dsr=dk. Group G1 shows a strange behavior in which the increase in the viscosity of the optical fiber

leads to an increase in the amplification rate of the unstable modes belonging to this group. This strange behavior

indicates that unstable G1 modes belong to class A instability introduced by Benjamin (1963), more often termed

negative-energy waves. The frequency and the amplification rate of the unstable modes, belonging to the G1 group, are

examined when G goes to zero (the fiber then behaves like a rigid solid). We found that the amplification rate, as well as

the frequency, reaches finite values when G tends to zero, indicating that these modes are flow-based modes under the

classification of Carpenter and Garrad (1985, 1986).
9. Analysis of the G2 group

The group, G2, contains more unstable modes than the group G1. They exist only for the flow regime corresponding

to ~ReX1 confirming the experimental observation. The amplification rates versus the frequency of this group are shown

in Fig. 8, for three stations in the die located at x ¼ �1:34, 0 and þ1:34. It should be noted that at the middle station,

x ¼ 0, a part of the unstable modes is canceled. This may be explained by the form of the basic flow profile in the middle

of the die, where the inflexion point is quasi-absent, as shown in Fig. 5. Note that the most destructive mode has a low

frequency. However, Fig. 8 shows that there is a set of unstable modes with frequencies approximately equal to �37:5
for the same azimuthal wavenumber n ¼ 1 and axial wavenumber k ¼ 2. These modes form a group of resonant modes,

which may form a harmful instability too, even though their amplification rates are relatively moderate, in comparison

with the amplification rate of the most destructive mode.

In Fig. 9(a), we represent the amplification rates and the frequencies of the most dangerous modes versus the

wavenumber. The amplification rates and the frequencies vary linearly with the wavenumber and the amplification

rate remains positive for large wavenumber, as shown in Fig. 9(a). Therefore, the waves smaller than the die length

are unstable, which is consistent with our assumption of local stability analysis. Note that the form of dependence

between the amplification rate and frequency on the one hand and the wave number, on the other, is observed in
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Fig. 7. (a) The amplification rate versus the wave number of the weakly unstable mode, group G1. (b) The frequency of weakly

unstable modes versus the wave number, group G1. —, ~Re ¼ 5; - - -, ~Re ¼ 0:1. G ¼ 0:02, Zr ¼ 0, the azimuthal wavenumber n ¼ 1.
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Fig. 6. The locus of the points in the complex (amplification rate, frequency)-plane used as initial condition for the search for the

eigenvalues.

M. Hamadiche, H. Abou-Shady / Journal of Fluids and Structures 22 (2006) 599–615 609
the Kelvin–Helmholtz instability in a shear layer [see Drazin and Reid (1995, p. 14–23)]. Indeed, our basic flow

has, in some region of the die, an opposite flow and an inflection point, which leads to a similar Kelvin–Helmholtz

instability.

It is found that the viscosity of the optical fiber has an insignificant effect on these modes, indicating again that these

instabilities are a Kelvin–Helmholtz type. Owing to the effect of viscosity on these modes, one can classify them as

belonging to class C in the Benjamin (1963) classification.

In order to classify these modes using the method introduced by Carpenter and Garrad (1985), we have examined the

limit of the amplification rate and the frequency when G tends to zero, i.e. when the optical fiber behaves like a rigid

wall. It was found that the amplification rate and the frequency tend to zero when G approaches zero. This result

indicates that these modes exist for the case of a quasi-rigid wall, but with a very low amplification rate. This means that

their origin is in the fluid, and that they are fluid-based modes. However, they are greatly amplified by the elasticity of

the optical-fiber structure.
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Fig. 9. (a) Amplification rates of the most unstable modes versus the wavenumber k, group G2, at the first station x ¼ �1:34. (b) The
frequencies of the most unstable modes versus the wavenumber k, group G2, at the first station, x ¼ �1:34. Re ¼ 50, ~Re ¼ 5, G ¼ 0:02,
Zr ¼ 0, the azimuthal wavenumber n ¼ 1.
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Fig. 8. Amplification rate versus the frequency of the unstable modes, group G2, at the following three stations: (a) station number

one, x ¼ �1:34, (b) station number two, x ¼ 0, (c) station number three, x ¼ 1:34. Re ¼ 50, ~Re ¼ 5, G ¼ 0:02, Zr ¼ 0, the azimuthal

wavenumber n ¼ 1, the axial wavenumber k ¼ 2.
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It is found that the frequencies of the unstable modes change slightly with the variation of the wave number, as shown

in Fig. 9(b). The form of the curves, shown in Fig. 9(b), indicates that the group velocity of these modes may be positive,

negative or zero, depending on the sign and the value of the function, qsi=qk. Furthermore, the group velocity of those

unstable modes is very small in comparison with the speed of the optical fiber. It is well known that the absolute

instability is a notion related only to open systems (Briggs, 1964). However, the analysis we made here is valid for the

short-wave modes (large wavenumber). Therefore, the length of the unstable wave is small in comparison with the die

length. Thus, the local analysis is equivalent to the analysis of an open system. Therefore, in the limit of our assumption,

one can examine the instability to see if it is absolute or convective. The fact that the group velocity of the unstable

mode is very low may indicate a high probability for the existence of absolute instabilities, which could be the subject of

a future study.

As mentioned above, the G2 group does not exist at low Reynolds number, e.g. ~Rep0:2, where the basic flow takes a

one-cell form. Moreover, it exists only when the basic flow bifurcates to a two-cell form, i.e. ~ReX1, although the basic
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Fig. 10. The amplification rate and frequency versus the Reynolds number of two unstable modes at the first station, x ¼ �1:34. The
axial wavenumber k ¼ 2, G ¼ 0:02, Zr ¼ 0, the azimuthal wavenumber n ¼ 1.
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flow seems to bifurcate smoothly when the Reynolds number increases. In order to examine the behavior of the G2

group, as the Reynolds number approaches the critical value from above, we present in Fig. 10 the amplification rate

and frequency versus the Reynolds number. At each Reynolds number value in the graph, the basic flow has been

computed. Fig. 10(a) suggests that the amplification rate diverges when the Reynolds number tends toward the value at

which the basic flow bifurcates. Fig. 10(b) suggests that the frequency diverges as well at this critical Reynolds number

value. It was impossible to follow the computation in order to reduce the Reynolds number below this value. This

indicates that those modes are in fact related to the flow regime where ~ReX1.

The fact that the modes diverge to leave the system, when some of its control parameters vary, is observed in other

circumstances. For instance, in swirling flow, Hamadiche and Atassi (2003) observed that the most propagated acoustic

modes formed by the coalescence of two acoustic modes is cut off when the Mach number reaches some critical value. The

cut off is accompanied by the divergence of the frequency of the acoustic wave. This phenomenon is not physical, because

the frequency has a finite value. This mode behavior corresponds to the fact that the basic flow is forced to be steady for the

control parameters under consideration, whereas, in fact, it has to be an unsteady one (private communication from Atassi).

Note that, similar unstable modes have been obtained for the azimuthal wavenumber 1onp6. There is no significant

variation of the amplification rates or frequencies of the unstable modes in this range of azimuthal wave number.
10. Surface tension effects on the coat deformation

We consider the effects of gravity and surface tension on a film of resin in its liquid phase, at the die outlet. We suppose

that the film is axisymmetric, with radius R, and that it has a circular cross-section. The axis of the film is parallel to the

gravity field which itself is parallel to the axes of the optical fiber (see Fig. 3). We suppose that the radius of the optical

fiber and the thickness of the film are small enough to allow the surface tension to be the dominant force in the flow under

consideration. Let R1 and R2 be the two principal radii of the surface of the film. Then the pressure jump on the surface is

Dp ¼ g
1

R1
þ

1

R2

� �
. (43)

Due to the fact that the flow is axisymmetric, the film-surface equation, in cylindrical coordinates described in Fig. 3, reads

r ¼ RðxÞ. (44)

The normal to the surface is

n ¼
ð1; 0;�R0Þ

ðR
02 þ 1Þ1=2

. (45)

Considering the atmospheric pressure as the origin of the pressure, the force on the surface of the film due to surface

tension is

F ¼ �

Z
s

npds ¼ �

Z
s

ðnxxþ nrerÞpds ¼ x

Z
s

p
R0

ðR
02 þ 1Þ1=2

ds; (46)

the term containing er is eliminated owing to the axial symmetry.
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10.1. Principal curvature radii

In order to compute the pressure jump due to the surface tension, we need the principal radii of curvature. Due to the

symmetry of the problem, one of the principal radii, we name R1, is equal to the cross-section radius Rþ R0. We

consider in our analysis the case where R05Rc, so that R1 � R. The other principal radius has to be computed as

follows. The equation of the surface is invariant under rotation around the x-axis, so the equation of the surface is any

function R ¼ RðxÞ that reveals the variation of the radius with axial distance in the ðx; rÞ-plane. The slope of the curve in
the ðx; rÞ-plane is

tanðyÞ ¼
dRðxÞ

dx
¼ R0; (47)

the angle y is the angle formed by the tangent to the curve and the x-axis. From the foregoing equation one can write

dðtanðyÞÞ ¼ ð1þ tan2ðyÞÞdy ¼ R00 dx, (48)

so

dy
dx
¼

R00

1þ tan2ðyÞ
¼

R00

1þ R
02
; (49)

the curvature radius R1 is defined by

R1 dy ¼ dc ¼ ðdx2 þ dR2Þ
1=2
¼ dxð1þ R

02Þ
1=2 (50)

which leads to

1

R1
¼

dy
dx

1

ð1þ R
02Þ

1=2
¼

R00

ð1þ R
02Þ

3=2
. (51)

The pressure jump is

p ¼ g
1

R
þ

R00

ð1þ R
02Þ

3=2

 !
, (52)

g being a constant depending on the material propriety. Using Eq. (52) and the fact that

ds ¼ 2pRdc ¼ 2pR½ðdxÞ2 þ ðdRÞ2�1=2 ¼ 2pRð1þ R
02Þ

1=2 dx

and performing the integration over the surface limited by x and xþ dx, Eq. (46) reads

F ¼ 2pgx
Z xþdx

x

R0 þ
RR0R00

ð1þ R
02Þ

3=2

 !
dx ¼ 2pgx R0 þ

RR0R00

ð1þ R
02Þ

3=2

 !
dx ¼ 2pRR0pdxx, (53)

F ¼ 2pRR0pdxx, (54)

where dx is an infinitesimal increment.

10.2. Equilibrium equation

As the film is thin in comparison with the radius of the optical fiber, we suppose that the pressure does not vary over

the section, and that it depends only on the axial distance. The momentum balance applied to the volume element,

indicated in Fig. 3, leads to the equilibrium equation

ðpðR2pÞx � pðR2pÞxþdxÞxþ F� rgpR2 dxx ¼ r
Z

s

vv:nds ¼ rððu2sÞx � ðu
2sÞxþdxÞx, (55)

�
dðR2pÞ

dx
þ 2RR0p� rgR2 ¼ �r

dðu2R2Þ

dx
. (56)

The conservation of mass gives

u ¼ u0
Rc

R

� �2

, (57)
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so Eq. (56) becomes

�
dðR2pÞ

dx
þ 2RR0p� rgR2 ¼ �R4

cu20r
dðR�2Þ

dx
. (58)

The dynamic equations are

1

R
þ

R00

ð1þ R
02Þ

3=2
�

p

g
¼ 0, (59)

�
dðR2pÞ

dx
þ 2RR0p� rgR2 � 2R4

cu20r
R0

R3
¼ 0, (60)

or equivalently

R00

ð1þ R
02Þ

3=2
þ

1

R
�

p

g
¼ 0, (61)

ðdpÞ

dx
þ rgþ 2R4

cu20r
R0

R5
¼ 0. (62)

10.3. Dimensionless equations

In order to obtain dimensionless equations, we scale the distance by the inlet diameter, Rc, and the pressure by gR�1c ,

g being the coefficient of the surface tension. We define the dimensionless pressure p ¼ Rcpg�1, and Y ¼ RR�1c ,

X ¼ xR�1c the dimensionless radial and axial distance, respectively. The dynamic equations then become

Y 00

ð1þ Y
02Þ

3=2
þ

1

Y
� p ¼ 0, (63)

ðdpÞ
dX
þH1 þH2

Y 0

Y 5
¼ 0, (64)

H1 ¼
rgR2

c

g
; H2 ¼

2rRcu20
g

. (65)

The dimensionless number H1 is the ratio of the gravity and the surface tension forces, and H2 is the ratio of the inertia

and the surface tension forces.

10.4. Numerical solution

In order to solve the system of equations given above by the Runge–Kutta method we write it in the form

dY

dX
¼ c, (66)

dc
dX
¼ �

1

Y
ð1þ c2

Þ
3=2
þ pð1þ c2

Þ
3=2, (67)

ðdpÞ
dX
¼ �H1 �H2

c
Y 5

. (68)

Figs. 11 and 12 show the wavy form of the coating surface, described by Eqs. (66)–(68). The system of differential

equations, (66)–(68), involve two dimensionless parameters, namely H1 and H2. H1 is the ratio of the gravity and

surface-tension forces; H2 is the ratio of inertia and surface tension-forces. The proposed model predicts a wavy form

for the optical fiber surface coating. Fig. 11 shows that the surface of the fiber has a wavy form. Fig. 12 shows that the

length of the wave depends on the two parameters H1 and H2. Furthermore, Fig. 12 shows that the maximum

wavelength is of the order of magnitude of the radius of the fiber. For a fixed H2, it is found that the wavelength

decreases with increasing H1 and reaches its maximum value for H1 ¼ 0. When H1 ¼ H2 the surface oscillation

becomes very sharp, leading to a breakdown of the optical-fiber coating, as depicted in Fig. 12. Furthermore, increasing
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Fig. 12. Oscillation of the fiber cable surface during the coating process. (a) H2 ¼ 100 and, from above, H1 ¼ 0, H1 ¼ 20, H1 ¼ 50,

H1 ¼ 100. (b) H1 ¼ 100, and, from below, H2 ¼ 100, H2 ¼ 200, H2 ¼ 300, H2 ¼ 400, H2 ¼ 500.
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Fig. 11. Oscillation of the fiber cable surface during the coating process; (b) is an enlargement of the first part of (a). H1 ¼ 0:1,
H2 ¼ 10.
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H1 leads to decreases in the thickness of the optical-fiber coating, causing the coating to break. For fixed H1, the

amplitude of the wave decreases with increasing H2. For low values of H2, the amplitude of the wave may reach half of

the fiber radius.
11. Conclusions

In the present work, we consider the stability of the optical-fiber coating system. In the first stage, the optical fiber is

assumed to be a rigid solid, propelled at constant speed, and passing through a die, which is filled by a resin. The die is

supplied by the resin through a slit in the top that leaves the die through a slit around the optical fiber. The two-

dimensional Navier–Stokes equations, associated with the appropriate boundary conditions in ðc;oÞ formulation, are

solved to find the behavior of the resin in the die.

It has been found that, for Reynolds number less than the experimental critical Reynolds number estimated by

Kaneko et al. (2002), the basic flow exhibits a one-cell pattern. For a Reynolds number higher than the experimental

critical Reynolds number given by Kaneko et al. (2002), the basic flow consists of two-cell patterns. In the later case the

basic flow has an inflection point.

In the second stage, we have considered the optical fiber as a viscoelastic medium interacting with the previously

computed basic flow in the die. The stability of the system composed of the optical fiber considered as a viscoelastic

medium and the basic flow has been studied. Both axisymmetric and nonaxisymmetric disturbances were considered. It

was found that the system is unstable to nonaxisymmetric disturbances. Moreover, there are two groups of unstable

modes, termed G1 and G2.
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The group G1 represents an instability having a small wavenumber, which is not compatible with the local-stability-

analysis hypothesis that we have made. Therefore, this instability is not the origin of the vibration observed in the

experiment of Kaneko et al. (2002). However, the analysis of the unstable modes of this group leads to the conclusion

that they are fluid-based modes, which belong to class A in the Benjamin classification. Note that these modes exist for

low- and high-Reynolds number flow regimes and only for the azimuthal wave number n ¼ 1. Moreover, at low

Reynolds number, only one mode has been found having a relatively small amplification rate; at high Reynolds number

only two modes have been found having a relatively small amplification rate.

The group G2 is a short-wave instability compatible with our local-stability-analysis hypothesis. The most unstable

mode is one of relatively low frequency. The group G2 has a large number of unstable modes covering a broad

frequency range, and they exist for the azimuthal wavenumber nX1. Among the unstable modes, there is a set of

unstable modes having the same frequency and the same wavenumber, leading to the resonance of the system. The

group G2 does not exist when the Reynolds number is under the experimental critical value. The elasticity of the optical

fiber leads to a dramatic increase in the amplification rate of these modes. Based upon the importance of the

amplification rate, the resonance and the large number of the unstable modes in this group, we have concluded that this

group is the cause of the optical-fiber vibration observed in the experiment.

A model based on the surface-tension forces is proposed to explain a possible irregularity of the coating surface. In

this model, the resin at the outlet of the die is assumed to be in its liquid phase. The formulation of the problem leads to

the third-order nonlinear differential equation describing the coating surface. It is found that the dynamic equation

depends on two dimensionless parameters, namely H1 and H2. H1 is the ratio of the gravity and surface-tension forces,

and H2 is the ratio of inertia and surface-tension forces. The proposed model predicts a wavy form of the optical-fiber

surface coating. The wavelength and amplitude depend on the dimensionless parameters H1 and H2. It has been found

that the surface coating may be broken for some values of H2 and H1.
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